SERTARUL CU GANDURI

20/07/2014

„Stephen Hawking. A Life in Science” – Fragmente 1


Din cartea:” Stephen Hawking a Life in Science” (Michael White and John Gribbin), John Henry Press.2002.

At the age of twenty-one Hawking discovered that he had the wasting disease ALS, also called motor neuron disease, and he has spent much of his life confined to a wheelchair.

==========

She asks the professor if he believes that there is a God who created the Universe and guides His creation. He smiles momentarily, and the machine voice says, “No.”

==========

He has been made a CBE—commander of the British empire—and then companion of honour by Queen Elizabeth II and has written a popular science book, A Brief History of Time, which stayed on the best-seller list for five years from 1988 to 1993 and has to date sold over ten million copies worldwide.

==========

It is perhaps one of those oddities of serendipity that January 8, 1942 was both the three-hundredth anniversary of the death of one of history’s greatest intellectual figures, the Italian scientist Galileo Galilei, and the day Stephen William Hawking was born into a world torn apart by war and global strife. But as Hawking himself points out, around two hundred thousand other babies were born that day, so maybe it is after all not such an amazing coincidence.

==========

Stephen’s mother, Isobel, had arrived in Oxford only a short time before the baby was due. She lived with her husband Frank in Highgate, a northern suburb of London, but they had decided that she should move to Oxford to give birth.

==========

When he was two weeks old, Isobel Hawking took Stephen back to London and the raids. They almost lost their lives when he was two, when a V2 rocket hit a neighbor’s house.

==========

Hawking was eight when the family arrived there. Frank Hawking had a strong desire to send Stephen to a private school. He had always believed that a private school education was an essential ingredient for a successful career. There was plenty of evidence to support this view: in the 1950s, the vast majority of members of Parliament had enjoyed a privileged education, and most senior figures in institutions such as the BBC, the armed forces, and the country’s universities had been to private schools.

==========

Stephen, he decided, would be sent to Westminster, one of the best schools in the country.

==========

When he was ten, the boy was entered for the Westminster School scholarship examination. Although his father was doing well in medical research, a scientist’s salary could never hope to cover the school fees at Westminster—such things were reserved for the likes of admirals, politicians, and captains of industry. Stephen had to be accepted into the school on his own academic merit; he would then have his fees paid, at least in part, by the scholarship.

==========

St. Albans School had 600 boys when Stephen arrived there in September 1952. Each year was streamed as A, B, or C according to academic ability. Each boy spent five years in senior school, progressing from the first form to the fifth, at the end of which period he would sit for Ordinary (O) Level exams in a broad spectrum of subjects, the brighter boys taking eight or nine examinations. Those who were successful at O

==========

He passed easily and, along with exactly ninety other boys, was accepted into the school on September 23, 1952. The fees were fifty-one guineas (£53.55) a term.

==========

St. Albans School proudly boasted a very high intellectual standard, a fact recognized and appreciated by the Hawkings very soon after Stephen started there. Before long, any nagging regrets that he had been unable to enter Westminster were forgotten. St. Albans School was the perfect environment for cultivating natural talent.

==========

Much remembered and highly thought of was a master fresh out of university named Finlay who, way ahead of his time, taped radio programs and used them as launch points for discussion classes with 3A. The subject matter ranged from nuclear disarmament to birth control and everything in between. By all accounts, he had a profound effect on the intellectual development of the thirteen-year-olds in his charge, and his lessons are still fondly remembered by the journalists, writers, doctors, and scientists they have become today.

==========

English schoolboys attending the private schools of the 1950s had little time for girls in their busy program, and parties were single-sex affairs until the age of fifteen or sixteen. It was only then that they would have the inclination and parental permission to hold sherry parties at their houses

==========

Frank Hawking kept meticulous accounts of everything he did in a collection of diaries maintained until the day he died. He also wrote fiction, completing several unpublished novels. One of his literary efforts was written from a woman’s viewpoint. Although Isobel respected his efforts when she read it, she believed that it was unsuccessful.

==========

Michael Church describes how he felt an indefinable intellectual presence when it came to discussing matters vaguely mystical or metaphysical with Stephen. Remembering one encounter, he says: I wasn’t a scientist and didn’t take him remotely seriously until one day when we were messing around in his cluttered, joke-inventor’s den. Our talk turned to the meaning of life—a topic I felt pretty hot on at the time—when suddenly I was arrested by an awful realization: he was encouraging me to make a fool of myself, and watching me as though from a great height. It was a profoundly unnerving moment.2

==========

In the spring of 1958, Hawking and his friends, including new recruits to the group, Barry Blott and Christopher Fletcher, built a computer called LUCE—Logical Uniselector Computing Engine. In the 1950s in Britain, only a few university departments and the Ministry of Defence had computers.

==========

Hawking and his friends received their first exposure to the press when the local newspaper, the Herts Advertiser, covered the story of the “schoolboy boffins” building their newfangled machine.

==========

When scientists refer to the “classical” ideas of physics, they are not referring back to the thoughts of the Ancient Greeks. Strictly speaking, classical physics is the physics of Isaac Newton, who laid the foundations of the scientific method for investigating the world back in the seventeenth century.

==========

two revolutions, the first sparked by Einstein’s general theory of relativity and the second by the quantum theory. The first is the best theory we have of how gravity works; the second explains how everything else in the material world works. Together, these two topics, relativity theory and quantum mechanics, formed the twin pillars of modern twentieth-century science. The Holy Grail of modern physics, sought by many, is a theory that will combine the two into one mathematical package.

==========

the discovery of pulsars, in 1967, the year Stephen Hawking celebrated his own twenty-fifth birthday. These objects are now known to be neutron stars, the collapsed cores of massive stars that have ended their lives in vast outbursts known as supernova explosions. It was the discovery of pulsars, collapsed objects on the verge of becoming black holes, that revived interest in the extreme implications of Einstein’s theory of gravity, and it was the study of black holes that led Hawking to achieve the first successful marriage between quantum theory and relativity.

==========

Hawking was already working on the theory of black holes at least two years before the discovery of pulsars, when only a few mathematicians bothered with such exotic implications of Einstein’s equations,

==========

But within ten years, observations made by Edwin Hubble with a new and powerful telescope on a mountaintop in California had shown that the Universe is expanding.

==========

One of the people instrumental in establishing this “wave-particle duality” of light was Einstein, who in 1905 showed how the way in which electrons are knocked out of the atoms in a metal surface by electromagnetic radiation (the photoelectric effect) can be explained neatly in terms of photons, not in terms of a pure wave of electromagnetic energy. (It was for this work, not his two theories of relativity, that Einstein received his Nobel Prize.)

==========

The German physicist Werner Heisenberg established in the 1920s that all observable quantities are subject, on the quantum scale, to random variations in their size, with the magnitude of these variations determined by Planck’s constant. This is Heisenberg’s famous “uncertainty principle.” It means that we can never make a precise determination of all the properties of an object like an electron: all we can do is assign probabilities, determined in a very accurate way from the equations of quantum mechanics, to the likelihood that, for example, the electron is in a certain place at a certain time.

Lasă un comentariu »

Niciun comentariu până acum.

RSS feed for comments on this post. TrackBack URI

Lasă un răspuns

Completează mai jos detaliile cerute sau dă clic pe un icon pentru a te autentifica:

Logo WordPress.com

Comentezi folosind contul tău WordPress.com. Dezautentificare /  Schimbă )

Poză Twitter

Comentezi folosind contul tău Twitter. Dezautentificare /  Schimbă )

Fotografie Facebook

Comentezi folosind contul tău Facebook. Dezautentificare /  Schimbă )

Conectare la %s

Acest site folosește Akismet pentru a reduce spamul. Află cum sunt procesate datele comentariilor tale.

Blog la WordPress.com.

%d blogeri au apreciat: